Using IGA.jl

This tutorial shows how to integrate FerriteAssembly with the isogeometric analysis toolbox IGA.jl, directly based on IGA.jl's Infinite plate with hole example. Hence, please see there for further documentation details and important remarks regarding IGA.

The example considers solving a plate with a hole. A quarter of a plate is considered via symmetry boundary conditions, and a tensile load is applied on one edge. The full script without intermediate comments is available at the bottom of this page.

Start by loading the necessary packages

using Ferrite, IGA, LinearAlgebra, FerriteAssembly
import FerriteAssembly.ExampleElements: ElasticPlaneStrain

Setup

To clarify the differences, we split the setup into IGA.jl, Ferrite.jl, and FerriteAssembly.jl specific parts.

IGA.jl setup

We begin by generating the mesh by using IGA.jl's built-in mesh generators, specifically a "plate with hole".

function create_mesh(; nels = (20,10), order)
    nurbsmesh = generate_nurbs_patch(:plate_with_hole, nels, order)
    grid = BezierGrid(nurbsmesh)

    addfacetset!(grid, "left", (x) -> x[1] ≈ -4.0)
    addfacetset!(grid, "bot", (x) -> x[2] ≈ 0.0)
    addfacetset!(grid, "right", (x) -> x[1] ≈ 0.0)

    return grid
end
order = 2
grid = create_mesh(; order);

Create the IGA.jl cell and facet values for storing the the IGA.jl shape function values and gradients.

ip = IGAInterpolation{RefQuadrilateral, order}()
qr_cell = QuadratureRule{RefQuadrilateral}(4)
qr_face = FacetQuadratureRule{RefQuadrilateral}(3)

cv = BezierCellValues(qr_cell, ip^2);
fv = BezierFacetValues(qr_face, ip^2);

Ferrite.jl setup

Distribute dofs as normal

dh = DofHandler(grid)
add!(dh, :u, ip^2)
close!(dh);

And allocate system matrices and vectors

a = zeros(ndofs(dh))
r = zeros(ndofs(dh))
K = allocate_matrix(dh);

Before adding boundary conditions, starting with Dirichlet:

  1. Bottom face should only be able to move in x-direction
  2. Right boundary should only be able to move in y-direction
ch = ConstraintHandler(dh);
add!(ch, Dirichlet(:u, getfacetset(grid, "bot"), Returns(0.0), 2))
add!(ch, Dirichlet(:u, getfacetset(grid, "right"), Returns(0.0), 1))
close!(ch)
update!(ch, 0.0);

FerriteAssembly.jl setup

Neumann boundary conditions are added using FerriteAssembly's LoadHandler. We apply outwards traction on the left surface, and take the negative value since r = fint - fext.

traction = Vec((-10.0, 0.0))
lh = LoadHandler(dh)
add!(lh, Neumann(:u, fv, getfacetset(grid, "left"), Returns(-traction)));

material = ElasticPlaneStrain(;E=100.0, ν=0.3)
domain = DomainSpec(dh, material, cv)
buffer = setup_domainbuffer(domain);

Assembly and solution

We first assemble the equation system,

assembler = start_assemble(K, r)
apply!(a, ch)
work!(assembler, buffer; a=a)
apply!(r, lh, 0.0);

before solving it,

apply_zero!(K, r, ch)
a .-= K\r
apply!(a, ch);

Postprocessing

We use the QuadPointEvaluator to calculate stresses in each integration point, The QuadPointEvaluator requires a function with the following input arguments

function calculate_stress(m, u, ∇u, qp_state)
    ϵ = symmetric(∇u)
    return m.C ⊡ ϵ
end;

We can then use this to calculate the stress tensor in each integration point

qe = QuadPointEvaluator{SymmetricTensor{2,2,Float64,3}}(buffer, calculate_stress);
work!(qe, buffer; a=a);

Now we want to export the results to VTK. So we project the stresses at the quadrature points to the nodes using the L2Projector from Ferrite. Currently, however, IGA doesn't support L2 projection.

# projector = L2Projector(ip, grid)
# σ_nodes = IGA.igaproject(projector, qe.data, qr_cell; project_to_nodes=true);

Output results to VTK

IGA.VTKIGAFile("plate_with_hole.vtu", grid) do vtk
    write_solution(vtk, dh, a)
end

Plain program

Here follows a version of the program without any comments. The file is also available here: iga.jl.

using Ferrite, IGA, LinearAlgebra, FerriteAssembly
import FerriteAssembly.ExampleElements: ElasticPlaneStrain

function create_mesh(; nels = (20,10), order)
    nurbsmesh = generate_nurbs_patch(:plate_with_hole, nels, order)
    grid = BezierGrid(nurbsmesh)

    addfacetset!(grid, "left", (x) -> x[1] ≈ -4.0)
    addfacetset!(grid, "bot", (x) -> x[2] ≈ 0.0)
    addfacetset!(grid, "right", (x) -> x[1] ≈ 0.0)

    return grid
end
order = 2
grid = create_mesh(; order);

ip = IGAInterpolation{RefQuadrilateral, order}()
qr_cell = QuadratureRule{RefQuadrilateral}(4)
qr_face = FacetQuadratureRule{RefQuadrilateral}(3)

cv = BezierCellValues(qr_cell, ip^2);
fv = BezierFacetValues(qr_face, ip^2);

dh = DofHandler(grid)
add!(dh, :u, ip^2)
close!(dh);

a = zeros(ndofs(dh))
r = zeros(ndofs(dh))
K = allocate_matrix(dh);

ch = ConstraintHandler(dh);
add!(ch, Dirichlet(:u, getfacetset(grid, "bot"), Returns(0.0), 2))
add!(ch, Dirichlet(:u, getfacetset(grid, "right"), Returns(0.0), 1))
close!(ch)
update!(ch, 0.0);

traction = Vec((-10.0, 0.0))
lh = LoadHandler(dh)
add!(lh, Neumann(:u, fv, getfacetset(grid, "left"), Returns(-traction)));

material = ElasticPlaneStrain(;E=100.0, ν=0.3)
domain = DomainSpec(dh, material, cv)
buffer = setup_domainbuffer(domain);

assembler = start_assemble(K, r)
apply!(a, ch)
work!(assembler, buffer; a=a)
apply!(r, lh, 0.0);

apply_zero!(K, r, ch)
a .-= K\r
apply!(a, ch);

function calculate_stress(m, u, ∇u, qp_state)
    ϵ = symmetric(∇u)
    return m.C ⊡ ϵ
end;

qe = QuadPointEvaluator{SymmetricTensor{2,2,Float64,3}}(buffer, calculate_stress);
work!(qe, buffer; a=a);

IGA.VTKIGAFile("plate_with_hole.vtu", grid) do vtk
    write_solution(vtk, dh, a)
end

# This file was generated using Literate.jl, https://github.com/fredrikekre/Literate.jl

This page was generated using Literate.jl.