Porous media
Porous media is a two-phase material, consisting of solid parts and a liquid occupying the pores inbetween. Using the porous media theory, we can model such a material without explicitly resolving the microstructure, but by considering the interactions between the solid and liquid. In this example, we will additionally consider larger linear elastic solid aggregates that are impermeable. Hence, there is no liquids in these particles and the only unknown variable is the displacement field :u
. In the porous media, denoted the matrix, we have both the displacement field, :u
, as well as the liquid pressure, :p
, as unknown. The computational domain is shown below (the outdated figure doesn't show correct boundary conditions)
Computational domain | Pressure evolution | Vertical displacements¨ |
Theory of porous media
The strong forms are given as
\[\begin{aligned} \boldsymbol{\sigma}(\boldsymbol{\epsilon}, p) \cdot \boldsymbol{\nabla} &= \boldsymbol{0} \\ \dot{\Phi}(\boldsymbol{\epsilon}, p) + \boldsymbol{w}(p) \cdot \boldsymbol{\nabla} &= 0 \end{aligned}\]
where $\boldsymbol{\epsilon} = \left[\boldsymbol{u}\otimes\boldsymbol{\nabla}\right]^\mathrm{sym}$ The constitutive relationships are
\[\begin{aligned} \boldsymbol{\sigma} &= \boldsymbol{\mathsf{E}}:\boldsymbol{\epsilon} - \alpha p \boldsymbol{I} \\ \boldsymbol{w} &= - k \boldsymbol{\nabla} p \\ \Phi &= \phi + \alpha \mathrm{tr}(\boldsymbol{\epsilon}) + \beta p \end{aligned}\]
with $\boldsymbol{\mathsf{E}}=2G \boldsymbol{\mathsf{I}}^\mathrm{dev} + 3K \boldsymbol{I}\otimes\boldsymbol{I}$. The material parameters are then the shear modulus, $G$, bulk modulus, $K$, permeability, $k$, Biot's coefficient, $\alpha$, and liquid compressibility, $\beta$. The porosity, $\phi$, doesn't enter into the equations (A different porosity leads to different skeleton stiffness and permeability).
The variational (weak) form can then be derived for the variations $\boldsymbol{\delta u}$ and $\delta p$ as
\[\begin{aligned} \int_\Omega \left[\left[\boldsymbol{\delta u}\otimes\boldsymbol{\nabla}\right]^\mathrm{sym}: \boldsymbol{\mathsf{E}}:\boldsymbol{\epsilon} - \boldsymbol{\delta u} \cdot \boldsymbol{\nabla} \alpha p\right] \mathrm{d}\Omega &= \int_\Gamma \boldsymbol{\delta u} \cdot \boldsymbol{t} \mathrm{d} \Gamma \\ \int_\Omega \left[\delta p \left[\alpha \dot{\boldsymbol{u}} \cdot \boldsymbol{\nabla} + \beta \dot{p}\right] + \boldsymbol{\nabla}(\delta p) \cdot [k \boldsymbol{\nabla}]\right] \mathrm{d}\Omega &= \int_\Gamma \delta p w_\mathrm{n} \mathrm{d} \Gamma \end{aligned}\]
where $\boldsymbol{t}=\boldsymbol{n}\cdot\boldsymbol{\sigma}$ is the traction and $w_\mathrm{n} = \boldsymbol{n}\cdot\boldsymbol{w}$ is the normal flux.
Finite element form
Discretizing in space using finite elements, we obtain the vector equation $r_i = f_i^\mathrm{int} - f_{i}^\mathrm{ext}$ where $f^\mathrm{ext}$ are the external "forces", and $f_i^\mathrm{int}$ are the internal "forces". We split this into the displacement part $r_i^\mathrm{u} = f_i^\mathrm{int,u} - f_{i}^\mathrm{ext,u}$ and pressure part $r_i^\mathrm{p} = f_i^\mathrm{int,p} - f_{i}^\mathrm{ext,p}$ to obtain the discretized equation system
\[\begin{aligned} f_i^\mathrm{int,u} &= \int_\Omega [\boldsymbol{\delta N}^\mathrm{u}_i\otimes\boldsymbol{\nabla}]^\mathrm{sym} : \boldsymbol{\mathsf{E}} : [\boldsymbol{u}\otimes\boldsymbol{\nabla}]^\mathrm{sym} \ - [\boldsymbol{\delta N}^\mathrm{u}_i \cdot \boldsymbol{\nabla}] \alpha p \mathrm{d}\Omega &= \int_\Gamma \boldsymbol{\delta N}^\mathrm{u}_i \cdot \boldsymbol{t} \mathrm{d} \Gamma \\ f_i^\mathrm{int,p} &= \int_\Omega \delta N_i^\mathrm{p} [\alpha [\dot{\boldsymbol{u}}\cdot\boldsymbol{\nabla}] + \beta\dot{p}] + \boldsymbol{\nabla}(\delta N_i^\mathrm{p}) \cdot [k \boldsymbol{\nabla}(p)] \mathrm{d}\Omega &= \int_\Gamma \delta N_i^\mathrm{p} w_\mathrm{n} \mathrm{d} \Gamma \end{aligned}\]
Approximating the time-derivatives, $\dot{\boldsymbol{u}}\approx \left[\boldsymbol{u}-{}^n\boldsymbol{u}\right]/\Delta t$ and $\dot{p}\approx \left[p-{}^np\right]/\Delta t$, we can implement the finite element equations in the residual form $r_i(\boldsymbol{a}(t), t) = 0$ where the vector $\boldsymbol{a}$ contains all unknown displacements $u_i$ and pressures $p_i$. We use automatic differentiation to get the jacobian.
Implementation
We now solve the problem step by step. The full program with fewer comments is found in the final section
Required packages
using Ferrite, FerriteMeshParser, Tensors
using FerriteAssembly, FerriteProblems, FESolvers
using MaterialModelsBase
import FerriteProblems as FP
import MaterialModelsBase as MMB
import FerriteAssembly.ExampleElements: ElasticPlaneStrain, PoroElasticPlaneStrain
Physics
Both the elastic material and a poroelastic material is available in FerriteAssembly.ExampleElements
:
elastic_material() = ElasticPlaneStrain(;E=2.e3, ν=0.3)
poroelastic_material() = PoroElasticPlaneStrain(;E=2.e3, ν=0.3, k=0.05, α=1.0, β=1/2e3)
poroelastic_material (generic function with 1 method)
Problem definition
Mesh import
In this example, we import the mesh from the Abaqus input file, porous_media_0p75.inp
using FerriteMeshParser
's get_ferrite_grid
function. (A finer mesh, porous_media_0p25.inp
, is also available) We then create one cellset for each phase (solid and porous) for each element type. These 4 sets will later be used in their own FieldHandler
function get_grid()
# Import grid from abaqus mesh
grid = get_ferrite_grid(joinpath(@__DIR__, "porous_media", "porous_media_0p75.inp"))
# Create cellsets for each fieldhandler
addcellset!(grid, "solid3", intersect(getcellset(grid, "solid"), getcellset(grid, "CPS3")))
addcellset!(grid, "solid4", intersect(getcellset(grid, "solid"), getcellset(grid, "CPS4R")))
addcellset!(grid, "porous3", intersect(getcellset(grid, "porous"), getcellset(grid, "CPS3")))
addcellset!(grid, "porous4", intersect(getcellset(grid, "porous"), getcellset(grid, "CPS4R")))
# Create faceset for the sides and top
addfaceset!(grid, "sides", x->(first(x) < eps() || first(x) ≈ 5.0))
addfaceset!(grid, "top", x->(last(x) ≈ 10.0))
return grid
end
get_grid (generic function with 1 method)
Problem setup
Define the finite element interpolation, integration, and boundary conditions.
function create_definition(;t_rise=0.1, p_max=100.0)
grid = get_grid()
# Define interpolations
ipu_quad = Lagrange{RefQuadrilateral,2}()^2
ipu_tri = Lagrange{RefTriangle,2}()^2
ipp_quad = Lagrange{RefQuadrilateral,1}()
ipp_tri = Lagrange{RefTriangle,1}()
# Quadrature rules
qr_quad = QuadratureRule{RefQuadrilateral}(2)
qr_tri = QuadratureRule{RefTriangle}(2)
# CellValues
cvu_quad = CellValues(qr_quad, ipu_quad)
cvu_tri = CellValues(qr_tri, ipu_tri)
cvp_quad = CellValues(qr_quad, ipp_quad)
cvp_tri = CellValues(qr_tri, ipp_tri)
# Setup the DofHandler
dh = DofHandler(grid)
# Solid quads
sdh_solid_quad = SubDofHandler(dh, getcellset(grid,"solid4"))
add!(sdh_solid_quad, :u, ipu_quad)
# Solid triangles
sdh_solid_tri = SubDofHandler(dh, getcellset(grid,"solid3"))
add!(sdh_solid_tri, :u, ipu_tri)
# Porous quads
sdh_porous_quad = SubDofHandler(dh, getcellset(grid, "porous4"))
add!(sdh_porous_quad, :u, ipu_quad)
add!(sdh_porous_quad, :p, ipp_quad)
# Porous triangles
sdh_porous_tri = SubDofHandler(dh, getcellset(grid, "porous3"))
add!(sdh_porous_tri, :u, ipu_tri)
add!(sdh_porous_tri, :p, ipp_tri)
close!(dh)
# Setup each domain
domains = Dict{String,DomainSpec}()
# Solid domain with Triangle elements, quadratic displacement interpolation
domains["solid3"] = DomainSpec(sdh_solid_tri, elastic_material(), cvu_tri)
# Solid domain with Quadrilateral elements, quadratic displacement interpolation
domains["solid4"] = DomainSpec(sdh_solid_quad, elastic_material(), cvu_quad)
# Porous domain with Triangle elements
domains["porous3"] = DomainSpec(sdh_porous_tri, poroelastic_material(), (u=cvu_tri, p=cvp_tri))
# Porous domain with Quadrilateral elements
domains["porous4"] = DomainSpec(sdh_porous_quad, poroelastic_material(), (u=cvu_quad, p=cvp_quad))
# Add boundary conditions
ch = ConstraintHandler(dh);
# Fix bottom in y and sides in x
add!(ch, Dirichlet(:u, getfaceset(grid, "bottom"), Returns(0.0), [2]))
add!(ch, Dirichlet(:u, getfaceset(grid, "sides"), Returns(0.0), [1]))
# Zero pressure on top surface
add!(ch, Dirichlet(:p, getfaceset(grid, "top"), Returns(0.0)))
close!(ch)
# Add Neumann boundary conditions - normal traction on top
lh = LoadHandler(dh);
add!(lh, Neumann(:u, 2, getfaceset(grid, "top"), (x,t,n) -> -n*clamp(t/t_rise,0,1)*p_max))
return FEDefinition(domains; ch, lh)
end;
Postprocessing
struct PM_PostProcess{PVD}
pvd::PVD
filestem::String
end
function PM_PostProcess(filestem="porous_media")
pvd = paraview_collection("$filestem.pvd")
return PM_PostProcess(pvd, filestem)
end
function FESolvers.postprocess!(post::PM_PostProcess, p, solver)
step = FESolvers.get_step(solver)
vtk_grid("$(post.filestem)-$step", FP.get_dofhandler(p)) do vtk
vtk_point_data(vtk, FP.get_dofhandler(p), FP.getunknowns(p))
vtk_save(vtk)
post.pvd[step] = vtk
end
end
FP.close_postprocessing(post::PM_PostProcess, args...) = vtk_save(post.pvd);
Solving
We solve the problem by using linearly increasing time steps
problem = FerriteProblem(create_definition(), PM_PostProcess())
solver = QuasiStaticSolver(;nlsolver=LinearProblemSolver(), timestepper=FixedTimeStepper(map(x->x^2, range(0, 1, 41))))
solve_problem!(problem, solver)
Plain program
Here follows a version of the program without any comments. The file is also available here: porous_media.jl
.
using Ferrite, FerriteMeshParser, Tensors
using FerriteAssembly, FerriteProblems, FESolvers
using MaterialModelsBase
import FerriteProblems as FP
import MaterialModelsBase as MMB
import FerriteAssembly.ExampleElements: ElasticPlaneStrain, PoroElasticPlaneStrain
elastic_material() = ElasticPlaneStrain(;E=2.e3, ν=0.3)
poroelastic_material() = PoroElasticPlaneStrain(;E=2.e3, ν=0.3, k=0.05, α=1.0, β=1/2e3)
function get_grid()
# Import grid from abaqus mesh
grid = get_ferrite_grid(joinpath(@__DIR__, "porous_media", "porous_media_0p75.inp"))
# Create cellsets for each fieldhandler
addcellset!(grid, "solid3", intersect(getcellset(grid, "solid"), getcellset(grid, "CPS3")))
addcellset!(grid, "solid4", intersect(getcellset(grid, "solid"), getcellset(grid, "CPS4R")))
addcellset!(grid, "porous3", intersect(getcellset(grid, "porous"), getcellset(grid, "CPS3")))
addcellset!(grid, "porous4", intersect(getcellset(grid, "porous"), getcellset(grid, "CPS4R")))
# Create faceset for the sides and top
addfaceset!(grid, "sides", x->(first(x) < eps() || first(x) ≈ 5.0))
addfaceset!(grid, "top", x->(last(x) ≈ 10.0))
return grid
end
function create_definition(;t_rise=0.1, p_max=100.0)
grid = get_grid()
# Define interpolations
ipu_quad = Lagrange{RefQuadrilateral,2}()^2
ipu_tri = Lagrange{RefTriangle,2}()^2
ipp_quad = Lagrange{RefQuadrilateral,1}()
ipp_tri = Lagrange{RefTriangle,1}()
# Quadrature rules
qr_quad = QuadratureRule{RefQuadrilateral}(2)
qr_tri = QuadratureRule{RefTriangle}(2)
# CellValues
cvu_quad = CellValues(qr_quad, ipu_quad)
cvu_tri = CellValues(qr_tri, ipu_tri)
cvp_quad = CellValues(qr_quad, ipp_quad)
cvp_tri = CellValues(qr_tri, ipp_tri)
# Setup the DofHandler
dh = DofHandler(grid)
# Solid quads
sdh_solid_quad = SubDofHandler(dh, getcellset(grid,"solid4"))
add!(sdh_solid_quad, :u, ipu_quad)
# Solid triangles
sdh_solid_tri = SubDofHandler(dh, getcellset(grid,"solid3"))
add!(sdh_solid_tri, :u, ipu_tri)
# Porous quads
sdh_porous_quad = SubDofHandler(dh, getcellset(grid, "porous4"))
add!(sdh_porous_quad, :u, ipu_quad)
add!(sdh_porous_quad, :p, ipp_quad)
# Porous triangles
sdh_porous_tri = SubDofHandler(dh, getcellset(grid, "porous3"))
add!(sdh_porous_tri, :u, ipu_tri)
add!(sdh_porous_tri, :p, ipp_tri)
close!(dh)
# Setup each domain
domains = Dict{String,DomainSpec}()
# Solid domain with Triangle elements, quadratic displacement interpolation
domains["solid3"] = DomainSpec(sdh_solid_tri, elastic_material(), cvu_tri)
# Solid domain with Quadrilateral elements, quadratic displacement interpolation
domains["solid4"] = DomainSpec(sdh_solid_quad, elastic_material(), cvu_quad)
# Porous domain with Triangle elements
domains["porous3"] = DomainSpec(sdh_porous_tri, poroelastic_material(), (u=cvu_tri, p=cvp_tri))
# Porous domain with Quadrilateral elements
domains["porous4"] = DomainSpec(sdh_porous_quad, poroelastic_material(), (u=cvu_quad, p=cvp_quad))
# Add boundary conditions
ch = ConstraintHandler(dh);
# Fix bottom in y and sides in x
add!(ch, Dirichlet(:u, getfaceset(grid, "bottom"), Returns(0.0), [2]))
add!(ch, Dirichlet(:u, getfaceset(grid, "sides"), Returns(0.0), [1]))
# Zero pressure on top surface
add!(ch, Dirichlet(:p, getfaceset(grid, "top"), Returns(0.0)))
close!(ch)
# Add Neumann boundary conditions - normal traction on top
lh = LoadHandler(dh);
add!(lh, Neumann(:u, 2, getfaceset(grid, "top"), (x,t,n) -> -n*clamp(t/t_rise,0,1)*p_max))
return FEDefinition(domains; ch, lh)
end;
struct PM_PostProcess{PVD}
pvd::PVD
filestem::String
end
function PM_PostProcess(filestem="porous_media")
pvd = paraview_collection("$filestem.pvd")
return PM_PostProcess(pvd, filestem)
end
function FESolvers.postprocess!(post::PM_PostProcess, p, solver)
step = FESolvers.get_step(solver)
vtk_grid("$(post.filestem)-$step", FP.get_dofhandler(p)) do vtk
vtk_point_data(vtk, FP.get_dofhandler(p), FP.getunknowns(p))
vtk_save(vtk)
post.pvd[step] = vtk
end
end
FP.close_postprocessing(post::PM_PostProcess, args...) = vtk_save(post.pvd);
problem = FerriteProblem(create_definition(), PM_PostProcess())
solver = QuasiStaticSolver(;nlsolver=LinearProblemSolver(), timestepper=FixedTimeStepper(map(x->x^2, range(0, 1, 41))))
solve_problem!(problem, solver)
# This file was generated using Literate.jl, https://github.com/fredrikekre/Literate.jl
This page was generated using Literate.jl.