Model Components
Yield criteria
MechanicalMaterialModels.VonMises
— TypeVonMises(; Y0)
Create a von Mises yield criterion with initial yield limit, $Y_0$, as Y0
. The yield criterion is then defined as
\[\Phi = \sqrt{\frac{3}{2}} \left| \text{dev} \left( \boldsymbol{\sigma}_\mathrm{red} \right) \right| - \left[ Y_0 + \Delta Y \right] = 0\]
where $\boldsymbol{\sigma}_\mathrm{red}$ is the reduced (by kinematic hardening) stress tensor, and $\Delta Y$ the change of the initial yield limit due to isotropic hardening (i.e. $\kappa$).
MechanicalMaterialModels.DruckerPrager
— TypeDruckerPrager(; Y0, B)
Create a Drucker-Prager yield criterion, with initial yield limit, $Y_0$, as Y0
, and pressure sensitivity B
. The yield criterion is defined as
\[\Phi = \sqrt{\frac{3}{2}} \left| \mathrm{dev} \left( \boldsymbol{\sigma}_\mathrm{red} \right) \right| - B\mathrm{tr}\left( \boldsymbol{\sigma}_\mathrm{red} \right) - \left[ Y_0 + \Delta Y \right] = 0\]
where $\boldsymbol{\sigma}_\mathrm{red}$ is the reduced (by kinematic hardening) stress tensor, and $\Delta Y$ the change of the initial yield limit due to isotropic hardening (i.e. $\kappa$).
Isotropic hardening
MechanicalMaterialModels.Voce
— TypeVoce(;Hiso, κ∞)
Exponentially saturating isotropic hardening
\[\kappa_i = g_{\mathrm{iso},i}(\lambda) = \kappa_\infty \left[1 - \mathrm{exp}\left(\frac{H_\mathrm{iso}}{\kappa_\infty} \lambda \right)\right]\]
or alternatively as differential equations
\[\dot{\kappa_i} = \dot{\lambda} H_\mathrm{iso} \left[1 - \frac{\kappa_i}{\kappa_\infty}\right]\]
Arguments
Hiso
: Isotropic hardening modulus, $H_\mathrm{iso}$κ∞
: Saturation hardening value, $\kappa_\infty$
MechanicalMaterialModels.Swift
— TypeSwift(; K, λ0, n)
Isotropic hardening by the Swift power law
\[\kappa_i = g_{\mathrm{iso},i}(\lambda) = K \left[\lambda_0 + \lambda \right]^n\]
Arguments
K
: $K$λ0
: $\lambda_0$n
: $n$
Kinematic hardening
MechanicalMaterialModels.ArmstrongFrederick
— TypeArmstrongFrederick(; Hkin, β∞)
Armstrong-Frederick kinematic hardening law with modulus Hkin
and saturation stress β∞
.
The evolution equation according to Armstrong-Frederick hardening for $\boldsymbol{b}$ is given as
\[g_{\mathrm{kin},i}(\nu, \boldsymbol{\beta}_i) = -\boldsymbol{\nu} + \frac{3\boldsymbol{\beta}_i^\mathrm{T}}{2\beta_\infty}\]
noting that for small strains, $\boldsymbol{\beta}_i = \boldsymbol{\beta}_i^\mathrm{T}$ is symmetric.
Temp ref: doi: 10.1179/096034007X207589
MechanicalMaterialModels.Delobelle
— TypeDelobelle(; Hkin, β∞, δ)
Kinematic hardening law according to Delobelle with hardening modulus Hkin
, saturation stress, β∞
, and scaling parameter δ
, which scales between pure Armstrong-Frederick hardening, δ=1
, and Burlet-Cailletaud hardening, δ=0
.
The evolution equation according to Delobelle hardening for $\boldsymbol{b}$ is given as
\[g_{\mathrm{kin},i}(\nu, \boldsymbol{\beta}_i) = - \boldsymbol{\nu} + \delta\frac{3\boldsymbol{\beta}_i^\mathrm{T}}{2\beta_\infty} + \left[1 - \delta\right] \frac{\boldsymbol{\nu}:\boldsymbol{\beta}_i}{\beta_\infty}\boldsymbol{\nu}\]
noting that for small strains, $\boldsymbol{\beta}_i = \boldsymbol{\beta}_i^\mathrm{T}$ is symmetric.
Temp ref: doi: 10.1016/S0749-6419(95)00001-1
MechanicalMaterialModels.OhnoWang
— TypeOhnoWang(; Hkin, β∞, m)
Kinematic hardening law according to Ohno-Wang with hardening Hkin
, saturation stress, β∞
, and exponent, m
.
The evolution equation according to Ohno-Wang hardening for $\boldsymbol{b}$ is given as
\[g_{\mathrm{kin},i}(\nu, \boldsymbol{\beta}_i) = - \boldsymbol{\nu} + \frac{3\boldsymbol{\beta}_i^\mathrm{T}}{2\beta_\infty} \frac{\langle \boldsymbol{\nu}:\boldsymbol{\beta}_i \rangle}{\beta_\infty} \left[\frac{\beta_i^\mathrm{vM}}{\beta_\infty}\right]^m\]
where $\langle x \rangle = \mathrm{max}(x, 0)$ is the Macaulay bracket and $\beta_i^\mathrm{vM}$ is the effective von Mises backstress, see vonmises
. Note that for small strains, $\boldsymbol{\beta}_i = \boldsymbol{\beta}_i^\mathrm{T}$ is symmetric.
Temp ref: 10.1016/0749-6419(93)90042-O
Overstress functions
MechanicalMaterialModels.RateIndependent
— TypeRateIndependent()
The evolution of the plastic multiplier for a rate-dependent material is given by the so-called KKT loading/unloading conditions
\[\dot{\lambda} \geq 0, \quad \varPhi \leq 0, \quad \dot{\lambda}\varPhi = 0\]
MechanicalMaterialModels.NortonOverstress
— TypeNortonOverstress(; tstar, nexp)
The norton overstress function is defined as
\[\eta(\varPhi, \sigma_\mathrm{y}) = \frac{1}{t_*} \left\langle \frac{\varPhi}{\sigma_\mathrm{y}} \right\rangle^n\]
where the material parameters $t_*$ (tstar
) and $n$ (nexp
) represent the relaxation time and overstress sensitivty.