Report errors

Intended learning outcomes

  • Derive the strong form of the equilibrium equations for a solid

  • Apply appropriate boundary conditions to the boundary value problem

The boundary value problem (BVP)

Our goal is to investigate a structure subjected to external loads. We might, for example, be interested in the resulting deformations or the internal stresses. One way to think about this, is that applying known displacements to the surface causes stresses, σ\boldsymbol{ \sigma}, inside the body. For equilibrium to hold, we require that these stresses fulfill

σ+b=0\begin{aligned} \boldsymbol{ \sigma}\cdot\underline{\boldsymbol{ \nabla}} + \underline{\boldsymbol{ b}} &= \underline{\boldsymbol{ 0}} \end{aligned}

inside the body subjected to the body load b\underline{\boldsymbol{ b}} [Force/Volume], and that the traction t\underline{\boldsymbol{ t}} is

t=nσ\begin{aligned} \underline{\boldsymbol{ t}} &= \underline{\boldsymbol{ n}}\cdot\boldsymbol{ \sigma} \end{aligned}

on the boundary, where n\underline{\boldsymbol{ n}} is the normal vector.

How high the stresses become for given displacements, depends on the material behavior. That is, how σ\boldsymbol{ \sigma} depends on the strain ϵ\boldsymbol{ \epsilon}. For linear elasticity, we have that

σ(ϵ)= E:ϵ,(Linear elasticity)\begin{aligned} \boldsymbol{ \sigma}(\boldsymbol{ \epsilon}) = \textbf{\textsf{ E}}:\boldsymbol{ \epsilon}, \quad \text{(Linear elasticity)} \end{aligned}

We thus need to determine the strains, ϵ\boldsymbol{ \epsilon}, inside the body to calculate the stresses. And the strains depend on the displacements u\underline{\boldsymbol{ u}} as

ϵ(u)=[u]sym\begin{aligned} \boldsymbol{ \epsilon}(\underline{\boldsymbol{ u}}) = \left[ \underline{\boldsymbol{ u}}\otimes\underline{\boldsymbol{ \nabla}}\right]^{ \mathrm{sym} } \end{aligned}

We now have the differential equations required to solve the boundary value problem, namely

σ(ϵ(u(x)))+b=0,(x)xΩu(x)=uD(x),xΓDnσ(ϵ(u(x)))=tN(x),xΓN\begin{aligned} \boldsymbol{ \sigma}(\boldsymbol{ \epsilon}(\underline{\boldsymbol{ u}}(\underline{\boldsymbol{ x}})))\cdot\underline{\boldsymbol{ \nabla}} + \underline{\boldsymbol{ b}} &= \underline{\boldsymbol{ 0}},\phantom{(\underline{\boldsymbol{ x}})} \quad \underline{\boldsymbol{ x}} \in \Omega \\ \underline{\boldsymbol{ u}}(x) &= \underline{\boldsymbol{ u}}_{ \mathrm{ D} }(\underline{\boldsymbol{ x}}), \quad \underline{\boldsymbol{ x}} \in \Gamma_{ \mathrm{ D} } \\ \underline{\boldsymbol{ n}} \cdot \boldsymbol{ \sigma}(\boldsymbol{ \epsilon}(\underline{\boldsymbol{ u}}(\underline{\boldsymbol{ x}}))) &= \underline{\boldsymbol{ t}}_{ \mathrm{ N} }(\underline{\boldsymbol{ x}}), \quad \underline{\boldsymbol{ x}} \in \Gamma_{ \mathrm{ N} } \end{aligned}

where the first equation defines the differential equation inside the body (light orange). The second equation give the so-called Dirichlet boundary conditions (black, Γd\Gamma_{ \mathrm{ d} }), here we already know the value of the displacements. And finally, the part of the boundary with unknown displacements is called the Neuman (also natural) boundary (blue, ΓN\Gamma_{ \mathrm{ N} }). Here, we know the traction. Often, a majority of the boundary has zero load but we know it is zero!

The problem is - it is not possible to determine the function u(x)\underline{\boldsymbol{ u}}(\underline{\boldsymbol{ x}}) for most cases. While it is possible in a few special cases, what to do for the remaining problems? Often, we use the finite element method. But now let's first start with a case where we can find the solution analytically.

Analytical solution to the BVP (uniaxial stress)

Consider the case of cylinder subjected to uniaxial tension, with an isotropic material:

On the blue edges we have Neumann (natural) boundary conditions. We don't know the displacements, but we know the traction. On the right side (x1=Lx_1=L), this traction is [F/A]e1[F/A]\underline{\boldsymbol{ e}}_{ 1}, where AA is the cross-sectional area and on the sides of the cylinder the traction is zero. On the left side, we actually have mixed boundary conditions. We know that the traction components in the x2x_2-x3x_3 plane are zero (Neumann), and that the displacement is zero in the e1\underline{\boldsymbol{ e}}_{ 1} direction (Dirichlet).

How did we arrive at this ansatz?

We assume that the deformation will be homogeneous, i.e. there will be no shear and hence each "disk" with normal e1\underline{\boldsymbol{ e}}_{ 1} will deform equally. Firstly, we know that the isotropic material will not shear if loaded only in a normal direction. Secondly, we see that both sides of the cylinder behave identically with only loads in the normal direction and no shear traction forces).

u(x)=a1x1e1+a2x2e2+a3x3e3\begin{aligned} \underline{\boldsymbol{ u}}(\underline{\boldsymbol{ x}}) = a_1 x_1 \underline{\boldsymbol{ e}}_{ 1} + a_2 x_2 \underline{\boldsymbol{ e}}_{ 2} + a_3 x_3 \underline{\boldsymbol{ e}}_{ 3} \end{aligned}

From this ansatz, we obtain the constant strains as

ϵ=a1e1e1+a2e2e2+a3e3e3\begin{aligned} \boldsymbol{ \epsilon} = a_1 \underline{\boldsymbol{ e}}_{ 1}\otimes\underline{\boldsymbol{ e}}_{ 1} + a_2 \underline{\boldsymbol{ e}}_{ 2}\otimes\underline{\boldsymbol{ e}}_{ 2} + a_3 \underline{\boldsymbol{ e}}_{ 3}\otimes\underline{\boldsymbol{ e}}_{ 3} \end{aligned}

For linear isotropic elasticity, we have σ=2Gϵdev+3Kϵsph\boldsymbol{ \sigma} = 2G \boldsymbol{ \epsilon}^{ \mathrm{dev} } + 3K\boldsymbol{ \epsilon}^{ \mathrm{sph} }, with

ϵsph=a1+a2+a33Iϵdev=2a1a2a33e1e1+2a2a1a33e2e2+2a3a1a23e3e3\begin{aligned} \boldsymbol{ \epsilon}^{ \mathrm{sph} } &= \frac{a_1+a_2+a_3}{3} \boldsymbol{ I} \\ \boldsymbol{ \epsilon}^{ \mathrm{dev} } &= \frac{2a_1 - a_2 - a_3}{3}\underline{\boldsymbol{ e}}_{ 1}\otimes\underline{\boldsymbol{ e}}_{ 1} + \frac{2a_2 - a_1 - a_3}{3}\underline{\boldsymbol{ e}}_{ 2}\otimes\underline{\boldsymbol{ e}}_{ 2} + \frac{2a_3 - a_1 - a_2}{3}\underline{\boldsymbol{ e}}_{ 3}\otimes\underline{\boldsymbol{ e}}_{ 3} \end{aligned}

Checking the equilibrium by taking the divergence of σ\boldsymbol{ \sigma}, we see that this is zero as σ\boldsymbol{ \sigma} is constant. Hence, the proposed ansatz fulfills the equilbrium equation. However, we must also fulfill the boundary conditions. At x1=Lx_1=L, we have that t=[F/A]e1\underline{\boldsymbol{ t}}=[F/A]\underline{\boldsymbol{ e}}_{ 1}, that is

t=e1σ=e1[2Gϵdev+3Kϵsph]=2G2a1a2a33e1+K[a1+a2+a3]e1=FAe1FA=2G2a1a2a33+K[a1+a2+a3]\begin{aligned} \underline{\boldsymbol{ t}} &= \underline{\boldsymbol{ e}}_{ 1} \cdot \boldsymbol{ \sigma} = \underline{\boldsymbol{ e}}_{ 1} \cdot [2G \boldsymbol{ \epsilon}^{ \mathrm{dev} } + 3K\boldsymbol{ \epsilon}^{ \mathrm{sph} }] \\ &= 2G \frac{2a_1 - a_2 - a_3}{3} \underline{\boldsymbol{ e}}_{ 1} + K [a_1+a_2+a_3] \underline{\boldsymbol{ e}}_{ 1} = \frac{F}{A}\underline{\boldsymbol{ e}}_{ 1} \\ \frac{F}{A} &= 2G \frac{2a_1 - a_2 - a_3}{3} + K [a_1+a_2+a_3] \end{aligned}

Considering the boundary conditions on the side of the cylinder, e.g. at x2=r, x3=0x_2=r,\,x_3=0 and x2=0, x3=rx_2=0,\,x_3=r, we have that the traction is zero, e.g.

t=e2σ=2G2a2a1a33e2+K[a1+a2+a3]e2=00=2G2a2a1a33+K[a1+a2+a3]0=2G2a3a1a23+K[a1+a2+a3],obtained the same way as above\begin{aligned} \underline{\boldsymbol{ t}} &= \underline{\boldsymbol{ e}}_{ 2} \cdot \boldsymbol{ \sigma} = 2G \frac{2a_2 - a_1 - a_3}{3} \underline{\boldsymbol{ e}}_{ 2} + K [a_1+a_2+a_3] \underline{\boldsymbol{ e}}_{ 2} = \underline{\boldsymbol{ 0}} \\ 0 &= 2G \frac{2a_2 - a_1 - a_3}{3} + K [a_1+a_2+a_3] \\ 0 &= 2G \frac{2a_3 - a_1 - a_2}{3} + K [a_1+a_2+a_3], \quad \mathrm{obtained\,the\,same\,way\,as\,above} \end{aligned}

And hence, we see from the two last equivalent equations where we just swapped a2a_2 and a3a_3 that a2=a3a_2=a_3. Resulting in

FA=4Ga1a23+K[a1+2a2]0=2Ga2a13+K[a1+2a2]a2=3K2G2G+6Ka1\begin{aligned} \frac{F}{A} &= 4G \frac{a_1 - a_2}{3} + K [a_1+2a_2] \\ 0 &= 2G \frac{a_2 - a_1}{3} + K [a_1+2a_2] \\ a_2 &= -\frac{3K - 2G}{2G + 6K}a_1 \end{aligned}

To simplify, further calculation, we denote ν=[3K2G]/[2G+6K]\nu = [3K-2G]/[2G+6K] (This is the actual Poissons' ratio, as we can see from how it governs the relation between a1a_1 and a2a_2 along with Equation (7)). We then have

a2=νa1FA=4Ga1+νa13+K[a12νa1]a1=FA[4G[1+ν]+K[12ν]]\begin{aligned} a_2 &= -\nu a_1 \\ \frac{F}{A} &= 4G \frac{a_1 + \nu a_1}{3} + K [a_1-2\nu a_1] \\ a_1 &= \frac{F}{A[4G[1+\nu] + K[1-2\nu]]} \end{aligned}

This expression is now simplified by denoting E=4G[1+ν]+K[12ν]E=4G[1+\nu] + K[1-2\nu] (This is the actual Young's modulus, as we will se later). And we have that

a1=FAEa2=νFAE=a3\begin{aligned} a_1 &= \frac{F}{AE} \\ a_2 &= -\nu \frac{F}{AE} = a_3 \end{aligned}

Yielding the following displacements and strains.

u(x)=FAE[x1e1νx2e2νx3e3]ϵ=FAE[e1e1ν[e2e2+e3e3]]\begin{aligned} \underline{\boldsymbol{ u}}(\underline{\boldsymbol{ x}}) &= \frac{F}{AE} \left[ x_1 \underline{\boldsymbol{ e}}_{ 1} - \nu x_2 \underline{\boldsymbol{ e}}_{ 2} - \nu x_3 \underline{\boldsymbol{ e}}_{ 3}\right] \\ \boldsymbol{ \epsilon} &= \frac{F}{AE} \left[ \underline{\boldsymbol{ e}}_{ 1}\otimes\underline{\boldsymbol{ e}}_{ 1} - \nu [\underline{\boldsymbol{ e}}_{ 2}\otimes\underline{\boldsymbol{ e}}_{ 2} + \underline{\boldsymbol{ e}}_{ 3}\otimes\underline{\boldsymbol{ e}}_{ 3}]\right] \end{aligned}

Finally, if we insert the constitutive relationship σ=2Gϵdev+Kϵsph\boldsymbol{ \sigma}=2G \boldsymbol{ \epsilon}^{ \mathrm{dev} } + K\boldsymbol{ \epsilon}^{ \mathrm{sph} }, and using our definitions of EE and ν\nu from above, we obtain

σ=FAe1e1\begin{aligned} \boldsymbol{ \sigma} &= \frac{F}{A} \underline{\boldsymbol{ e}}_{ 1}\otimes\underline{\boldsymbol{ e}}_{ 1} \end{aligned}

I.e. we see that the stress is indeed uniaxial. Furthermore, seeing combining Equation (14) with Equation (15), we see that σ11=Eϵ11\sigma_{11}=E \epsilon_{11}, showing that the EE we defined earlier is the actual Young's modulus.

In summary, for even this very simple case, determining the solution to the BVP in Equation (5) was quite a bit of effort. And as previously noted, in many cases no unique solution exists even if we include simplifications such as plane stress or strain.