Report errors

Intended learning outcomes

  • Define the traction vector

  • Explain Cauchy's theorem

  • Define the Cauchy stress

  • Derive the continuum force equilibrium equation

  • Show that the Cauchy stress is symmetric

Stress

It is difficult to give a short answer to the question: "What is stress?". Here, we will explain it via the more understandable traction vector. Then, via Cauchy's theorem, we can introduce the Cauchy stress tensor σ\boldsymbol{ \sigma}. With the definition of σ\boldsymbol{ \sigma}, we can derive the equilibrium equation for a continuum body. Finally, we will show that equilibrium also requires that σ\boldsymbol{ \sigma} is a symmetric tensor.

The traction vector

Consider that we have a loaded structure (left), and then we make a plane cut through this structure (green line). In order to replace the internal forces acting on the cut plane, we need to introduce forces. These can be both perpendicular to the cut plane and along the cut plane. In reality, the forces are discrete between atoms in the material. However, in continuum mechanics, we introduce this as a continuous field of force per area, which we define as traction. More precisely, we consider an infinitesimal area dA\mathrm{d} A of this cut surface with normal vector n\underline{\boldsymbol{ n}} (right). The sum of force vectors acting on this surface is dF\underline{\boldsymbol{ \mathrm{d} F}} and the traction is then defined as

t:=dFdA\begin{aligned} \underline{\boldsymbol{ t}} := \frac{\underline{\boldsymbol{ \mathrm{d} F}}}{\mathrm{d} A} \end{aligned}

Cauchy's theorem

Above, we defined the traction vector t\underline{\boldsymbol{ t}}. For a loaded body, the traction vector, t\underline{\boldsymbol{ t}}, depends on both the position in the body and the normal vector of the cut plane. It would be convenient to have a measure of the internal forces (per area) in the body that doesn't depend on the exact cut plane. To solve this, we consider the tetrahedron below.

Relationship between areas

To be able to use this, we need to determine the relationship between the four areas. To this end, we will use the divergence theorem. If we consider a vector function a(x)\underline{\boldsymbol{ a}}(\underline{\boldsymbol{ x}}) defined inside and in the vicinity of a closed body Ω\Omega with the boundary Γ\Gamma, the Gauss (divergence) theorem states

Ωa dΩ=Γan^ dΓΩajj dΩ=Γajn^j dΓ\begin{aligned} \int_\Omega \underline{\boldsymbol{ a}}\cdot\underline{\boldsymbol{ \nabla}}\ \mathrm{d} \Omega &= \int_\Gamma \underline{\boldsymbol{ a}}\cdot\hat{\underline{\boldsymbol{ n}}}\ \mathrm{d} \Gamma \\ \int_\Omega a_j \nabla_j\ \mathrm{d} \Omega &= \int_\Gamma a_j \hat{n}_j\ \mathrm{d} \Gamma \end{aligned}

where n^\hat{\underline{\boldsymbol{ n}}} is a unit normal vector pointing out of the body. If we apply this theorem with the constant vector a=ei\underline{\boldsymbol{ a}} = \underline{\boldsymbol{ e}}_{ i} (such that ei=0 \underline{\boldsymbol{ e}}_{ i}\cdot\underline{\boldsymbol{ \nabla}}=0), we get that

Γein^ dΓ=Γn^i dΓ=0Γn^ dΓ=0\begin{aligned} \int_\Gamma \underline{\boldsymbol{ e}}_{ i}\cdot\hat{\underline{\boldsymbol{ n}}}\ \mathrm{d} \Gamma &= \int_\Gamma \hat{n}_i\ \mathrm{d} \Gamma = 0\quad \Rightarrow \quad \int_\Gamma \hat{\underline{\boldsymbol{ n}}}\ \mathrm{d} \Gamma &= \underline{\boldsymbol{ 0}} \end{aligned}

Our tetrahedron, we have 4 sides, with normal vectors n\underline{\boldsymbol{ n}}, e1-\underline{\boldsymbol{ e}}_{ 1}, e2-\underline{\boldsymbol{ e}}_{ 2}, and e3-\underline{\boldsymbol{ e}}_{ 3}, and corresponding areas AA, A1A_1, A2A_2, and A3A_3. Hence, in our case Equation (3) yields

Γn dΓ=A nA1e1A2e2A3e3=A nAiei=0\begin{aligned} \int_\Gamma \underline{\boldsymbol{ n}}\ \mathrm{d} \Gamma = A\ \underline{\boldsymbol{ n}} - A_1 \underline{\boldsymbol{ e}}_{ 1} - A_2 \underline{\boldsymbol{ e}}_{ 2} - A_3 \underline{\boldsymbol{ e}}_{ 3} = A\ \underline{\boldsymbol{ n}} - A_i \underline{\boldsymbol{ e}}_{ i} = \underline{\boldsymbol{ 0}} \end{aligned}

resulting in A n=AieiA\ \underline{\boldsymbol{ n}} = A_i \underline{\boldsymbol{ e}}_{ i}. If we take the dot-product of this equation with the base vector ej\underline{\boldsymbol{ e}}_{ j}, we finally get

A nej=Aieiej=Aiδij=Aj\begin{aligned} A\ \underline{\boldsymbol{ n}}\cdot\underline{\boldsymbol{ e}}_{ j} = A_i \underline{\boldsymbol{ e}}_{ i} \cdot \underline{\boldsymbol{ e}}_{ j} = A_i \delta_{ij} = A_j \end{aligned}

This equation, Aj=A nejA_j = A\ \underline{\boldsymbol{ n}}\cdot\underline{\boldsymbol{ e}}_{ j}, describes the relationship between the area AjA_j on side jj of the tetrahedron and the area AA on the slanted side. It depends only on the normal vector n\underline{\boldsymbol{ n}} of the slanted side.

Equilibrium on tetrahedron

We consider that the tetrahedron can include a body load which is load per volume, b\underline{\boldsymbol{ b}}, where the volume is VV. Then, the equilibrium equation for the tetrahedron becomes

0=tiAi+t A+b V\begin{aligned} 0 = \underline{\boldsymbol{ t}}_i A_i + \underline{\boldsymbol{ t}}\ A + \underline{\boldsymbol{ b}}\ V \end{aligned}

Evaluating this equation for each coordinate direction, ej\underline{\boldsymbol{ e}}_{ j}, we get

0=Aitiej+A tej+Vbej\begin{aligned} 0 &= A_i \underline{\boldsymbol{ t}}_i \cdot \underline{\boldsymbol{ e}}_{ j} + A\ \underline{\boldsymbol{ t}} \cdot \underline{\boldsymbol{ e}}_{ j} + V \underline{\boldsymbol{ b}} \cdot \underline{\boldsymbol{ e}}_{ j} \end{aligned}

Inserting Equation (5), we obtain

0=A[nei][tiej]+A tej+Vbej0=[nei][tiej]+tej+VAbej\begin{aligned} 0 &= A [\underline{\boldsymbol{ n}}\cdot\underline{\boldsymbol{ e}}_{ i}] [\underline{\boldsymbol{ t}}_i \cdot \underline{\boldsymbol{ e}}_{ j}] + A\ \underline{\boldsymbol{ t}} \cdot \underline{\boldsymbol{ e}}_{ j} + V \underline{\boldsymbol{ b}} \cdot \underline{\boldsymbol{ e}}_{ j} \\ 0 &= [\underline{\boldsymbol{ n}}\cdot\underline{\boldsymbol{ e}}_{ i}] [\underline{\boldsymbol{ t}}_i \cdot \underline{\boldsymbol{ e}}_{ j}] + \underline{\boldsymbol{ t}} \cdot \underline{\boldsymbol{ e}}_{ j} + \frac{V}{A} \underline{\boldsymbol{ b}} \cdot \underline{\boldsymbol{ e}}_{ j} \end{aligned}

If we now let the tetrahedron shrink, the volume-to-area ratio goes to zero (because the volume is proportional to the side lengths cubed, and the area to the side lengths squared). Hence, we get

[nei][tiej]+tej=0\begin{aligned} [\underline{\boldsymbol{ n}}\cdot\underline{\boldsymbol{ e}}_{ i}] [\underline{\boldsymbol{ t}}_i \cdot \underline{\boldsymbol{ e}}_{ j}] + \underline{\boldsymbol{ t}} \cdot \underline{\boldsymbol{ e}}_{ j} = 0 \end{aligned}

Let us denote the quantity tiej=σij-\underline{\boldsymbol{ t}}_i \cdot \underline{\boldsymbol{ e}}_{ j}=\sigma_{ij}. Noting that ni=nein_i=\underline{\boldsymbol{ n}}\cdot\underline{\boldsymbol{ e}}_{ i} is the component of n\underline{\boldsymbol{ n}} in the ei\underline{\boldsymbol{ e}}_{ i} direction, and tj=tejt_j=\underline{\boldsymbol{ t}} \cdot \underline{\boldsymbol{ e}}_{ j} is the component of t\underline{\boldsymbol{ t}} in the ej\underline{\boldsymbol{ e}}_{ j} direction, we have

niσij=tj\begin{aligned} n_i \sigma_{ij} = t_j \end{aligned}

Or, in tensor form

nσ=t\begin{aligned} \underline{\boldsymbol{ n}}\cdot \boldsymbol{ \sigma} = \underline{\boldsymbol{ t}} \end{aligned}

Equation (6) is Cauchy's Theorem. We see that the 2nd order tensor σ\boldsymbol{ \sigma} can describe the traction on a plane at a point in the body. We have thus achieved our goal that σ\boldsymbol{ \sigma} now describes the load in the body independent of which direction we cut the body in. With this information, let's use that to formulate the equilibrium equations!

Equilibrium

In the previous example, we took the equilibrium to find the definition of the Cauchy stress. In the process, we saw that the area terms were dominating over the volume terms as we went to an infinitesimal volume. But let's do it again, now considering that the stress may vary over our small volume. For simplicity, we consider a regular hexahedron.

The traction t1\underline{\boldsymbol{ t}}_1 will change slightly as we move from x0x_0 to x1=x0+dxx_1=x_0+\mathrm{d} x, but we consider its average value in the yy and zz directions. Similarly for t2\underline{\boldsymbol{ t}}_2 and t3\underline{\boldsymbol{ t}}_3 for x,zx,z and x,yx,y respectively. Taking the equilibrium equations for a volume load b\underline{\boldsymbol{ b}} and neglecting dynamic forces (i.e. quasi-static conditions) in the direction ei\underline{\boldsymbol{ e}}_i we obtain

[[(t1(x0)+t1(x1)]dydz+[(t2(y0)+t2(y1)]dxdz+[(t3(z0)+t1(z1)]dxdy]ei=beidV\begin{aligned} \left[\left[(\underline{\boldsymbol{ t}}_1(x_0)+\underline{\boldsymbol{ t}}_1(x_1)\right] \mathrm{d} y \mathrm{d} z + \left[(\underline{\boldsymbol{ t}}_2(y_0)+\underline{\boldsymbol{ t}}_2(y_1)\right] \mathrm{d} x \mathrm{d} z + \left[(\underline{\boldsymbol{ t}}_3(z_0)+\underline{\boldsymbol{ t}}_1(z_1)\right] \mathrm{d} x \mathrm{d} y\right] \cdot \underline{\boldsymbol{ e}}_i = -\underline{\boldsymbol{ b}} \cdot \underline{\boldsymbol{ e}}_i \mathrm{d} V \end{aligned}

Inserting Cauchy's Theorem, and noting that the normal vectors are ±ej\pm \underline{\boldsymbol{ e}}_j, we get

[e1[σ(x1)σ(x0)]dydz+e2[σ(y1)σ(y0)]dxdz+e3[σ(z1)σ(z0)]dxdy]ei=beidV\begin{aligned} \left[ \underline{\boldsymbol{ e}}_1 \cdot \left[\boldsymbol{ \sigma}(x_1)-\boldsymbol{ \sigma}(x_0)\right] \mathrm{d} y \mathrm{d} z + \underline{\boldsymbol{ e}}_2 \cdot \left[\boldsymbol{ \sigma}(y_1)-\boldsymbol{ \sigma}(y_0)\right] \mathrm{d} x \mathrm{d} z + \underline{\boldsymbol{ e}}_3 \cdot \left[\boldsymbol{ \sigma}(z_1)-\boldsymbol{ \sigma}(z_0)\right] \mathrm{d} x \mathrm{d} y \right] \cdot \underline{\boldsymbol{ e}}_i = -\underline{\boldsymbol{ b}} \cdot \underline{\boldsymbol{ e}}_i \mathrm{d} V \end{aligned}

where dV=dxdydz\mathrm{d} V = \mathrm{d} x \mathrm{d} y \mathrm{d} z. Changing to full index notation we get

[σ1i(x1)σ1i(x0)]dydz+[σ2i(y1)σ2i(y0)]dxdz+[σ3i(z1)σ3i(z0)]dxdy=bidV\begin{aligned} \left[\sigma_{1i}(x_1)-\sigma_{1i}(x_0)\right] \mathrm{d} y \mathrm{d} z + \left[\sigma_{2i}(y_1)-\sigma_{2i}(y_0)\right] \mathrm{d} x \mathrm{d} z + \left[\sigma_{3i}(z_1)-\sigma_{3i}(z_0)\right] \mathrm{d} x \mathrm{d} y = -b_i \mathrm{d} V \end{aligned}

Dividing by dV=dxdydz\mathrm{d} V=\mathrm{d} x \mathrm{d} y \mathrm{d} z, we obtain

σ1i(x0+dx)σ1i(x0)dx+σ2i(y0+dy)σ2i(y0)dy+σ3i(z0+dz)σ3i(z0)dz=bi\begin{aligned} \frac{\sigma_{1i}(x_0+\mathrm{d} x)-\sigma_{1i}(x_0)}{\mathrm{d} x} + \frac{\sigma_{2i}(y_0+\mathrm{d} y)-\sigma_{2i}(y_0)}{\mathrm{d} y} + \frac{\sigma_{3i}(z_0+\mathrm{d} z)-\sigma_{3i}(z_0)}{\mathrm{d} z} = -b_i \end{aligned}

Letting dx0\mathrm{d} x \rightarrow 0, dy0\mathrm{d} y \rightarrow 0, and dz0\mathrm{d} z \rightarrow 0, we obtain

dσ1idx+dσ2idy+dσ3idz=dσjidxj=bi\begin{aligned} \frac{\mathrm{d} \sigma_{1i}}{\mathrm{d} x} + \frac{\mathrm{d} \sigma_{2i}}{\mathrm{d} y} + \frac{\mathrm{d} \sigma_{3i}}{\mathrm{d} z} = \frac{\mathrm{d} \sigma_{ji}}{\mathrm{d} x_j} = -b_i \end{aligned}

which we can identify as the divergence of σT\boldsymbol{ \sigma}^{\mathrm{T}}:

σT+b=0\begin{aligned} \boldsymbol{ \sigma}^{\mathrm{T}}\cdot\underline{\boldsymbol{ \nabla}} + \underline{\boldsymbol{ b}} = \underline{\boldsymbol{ 0}} \end{aligned}

This is the force equilibrium equation for a continuum.

Symmetry

Finally, we can show that σ\boldsymbol{ \sigma} is a symmetric tensor. By using Cauchy's Theorem (Equation (6)), we can give the tractions directly from the stress components in the following figure

with the same coordinate system as before.

We then check that the counterclockwise moment around the e3\underline{\boldsymbol{ e}}_3 axis at x0\underline{\boldsymbol{ x}}_0 is zero. We denote the areas of the sides dAx=dydz\mathrm{d} A_x = \mathrm{d} y \mathrm{d} z and dAy=dxdz\mathrm{d} A_y = \mathrm{d} x \mathrm{d} z for clarity.

0=σ12dAxdxσ21dAydy+(σ22(y1)σ22(y0))dAydx2(σ11(x1)σ11(x0))dAxdy2+b2dVdx2b1dVdy2\begin{aligned} 0 &= \sigma_{12} \mathrm{d} A_x \mathrm{d} x - \sigma_{21} \mathrm{d} A_y \mathrm{d} y \\ &+ (\sigma_{22}(y_1)-\sigma_{22}(y_0)) \mathrm{d} A_y \frac{\mathrm{d} x}{2} - (\sigma_{11}(x_1)-\sigma_{11}(x_0)) \mathrm{d} A_x \frac{\mathrm{d} y}{2} \\ &+ b_2 \mathrm{d} V \frac{\mathrm{d} x}{2} - b_1 \mathrm{d} V \frac{\mathrm{d} y}{2} \end{aligned}

where b1b_1 and b2b_2 are the xx and yy components of the volume load. Dividing by dV=dxdydz=dAxdx=dAydy\mathrm{d} V=\mathrm{d} x \mathrm{d} y \mathrm{d} z = \mathrm{d} A_x \mathrm{d} x = \mathrm{d} A_y \mathrm{d} y we obtain

0=σ12σ21+[σ22(y1)σ22(y0)]dx2dy[σ11(x1)σ11(x0)]dy2dx+b2dx2b1dy2\begin{aligned} 0 = \sigma_{12} - \sigma_{21} + \left[\sigma_{22}(y_1)-\sigma_{22}(y_0)\right]\frac{\mathrm{d} x}{2 \mathrm{d} y} - \left[\sigma_{11}(x_1)-\sigma_{11}(x_0)\right]\frac{\mathrm{d} y}{2 \mathrm{d} x} + \frac{b_2 \mathrm{d} x}{2} - \frac{b_1 \mathrm{d} y}{2} \end{aligned}

Letting the size go to zero, maintaining the aspect ratio (such that dx/dy\mathrm{d} x/\mathrm{d} y remains constant), σ22(y1)σ22(y0)\sigma_{22}(y_1) \rightarrow \sigma_{22}(y_0), σ11(x1)σ11(x0)\sigma_{11}(x_1) \rightarrow \sigma_{11}(x_0), dx0\mathrm{d} x \rightarrow 0, and dy0\mathrm{d} y \rightarrow 0, and we have

σ12=σ21\begin{aligned} \sigma_{12} = \sigma_{21} \end{aligned}

Doing the same for the xzxz and yzyz planes gives the equivalent results, and we see that σij=σji\sigma_{ij}=\sigma_{ji}, i.e. that σ=σT\boldsymbol{ \sigma}=\boldsymbol{ \sigma}^{\mathrm{T}} showing that σ\boldsymbol{ \sigma} is a symmetric second order tensor.