The determinants for 2nd order tensors a in 2d and 3d are
2d: det(a)3d: det(a)=a11a22−a21a12=a11[a22a33−a32a23]−a12[a21a33−a31a23]+a13[a21a32−a31a22] as for 2x2 and 3x3 matrices.
det(aT)=det(a)
det(ab)=det(a)det(b)
det(a−1)=1/det(a)
det(ka)=kndet(a) (where n is the dimension)
∂a∂[det(a)]=det(a)a−T 2d: det(A)3d: det(A)=2!1εi1j1εi2j2εi3j3εi4j4Ai1i2i3i4Aj1j2j3j3=3!1εi1j1k1εi2j2k2εi3j3k3εi4j4k4Ai1i2i3i4Aj1j2j3j3Ak1k2k3k4