A) To index notation Express the following expressions in index notation. Define an object (e.g. a \boldsymbol{ a} a and a i j a_{ij} a ij ) that the expression is equal to, and then write that equation. Example: u ‾ ⊗ u ‾ \underline{\boldsymbol{ u}}\otimes\underline{\boldsymbol{ u}} u ⊗ u has the answer: a = u ‾ ⊗ u ‾ \boldsymbol{ a}=\underline{\boldsymbol{ u}}\otimes\underline{\boldsymbol{ u}} a = u ⊗ u becomes a i j = u i u j a_{ij}=u_i u_j a ij = u i u j in index notation. v ‾ a v ‾ \underline{\boldsymbol{ v}}\boldsymbol{ a}\underline{\boldsymbol{ v}} v a v
x b u ‾ \boldsymbol{ x}\boldsymbol{ b}\underline{\boldsymbol{ u}} x b u
[ a ⊗ a ] : [ v ‾ ⊗ v ‾ ] [\boldsymbol{ a}\otimes\boldsymbol{ a}]:[\underline{\boldsymbol{ v}}\otimes\underline{\boldsymbol{ v}}] [ a ⊗ a ] : [ v ⊗ v ]
Answers
1. v ‾ a v ‾ \underline{\boldsymbol{ v}}\boldsymbol{ a}\underline{\boldsymbol{ v}} v a v becomes a scalar value, x = v ‾ a v ‾ = v i a i j v j x=\underline{\boldsymbol{ v}}\boldsymbol{ a}\underline{\boldsymbol{ v}}=v_i a_{ij} v_j x = v a v = v i a ij v j 2. x b u ‾ \boldsymbol{ x}\boldsymbol{ b}\underline{\boldsymbol{ u}} x b u becomes a vector, v ‾ = x b u ‾ \underline{\boldsymbol{ v}}= \boldsymbol{ x}\boldsymbol{ b}\underline{\boldsymbol{ u}} v = x b u , v i = x i j b j k u k v_i=x_{ij}b_{jk}u_k v i = x ij b jk u k 3. [ a ⊗ a ] : [ v ‾ ⊗ v ‾ ] [\boldsymbol{ a}\otimes\boldsymbol{ a}]:[\underline{\boldsymbol{ v}}\otimes\underline{\boldsymbol{ v}}] [ a ⊗ a ] : [ v ⊗ v ] is a 4th order tensor double contracted with a 2nd order tensor, which gives a 2nd order tensor, x \boldsymbol{ x} x . This becomes x i j = a i j a k l v k v l x_{ij}= a_{ij} a_{kl} v_{k} v_{l} x ij = a ij a k l v k v l
B) From index notation Express the following index expressions as tensor expressions. x = a i j b i j x = a_{ij} b_{ij} x = a ij b ij
v i = u k a i k v_{i} = u_k a_{ik} v i = u k a ik
A i j k l = u i v l b j k \textsf{ A}_{ ijkl}= u_i v_l b_{jk} A ijk l = u i v l b jk
Answers
1. x = a : b x = \boldsymbol{ a}:\boldsymbol{ b} x = a : b 2. v ‾ = a v ‾ \underline{\boldsymbol{ v}} = \boldsymbol{ a}\underline{\boldsymbol{ v}} v = a v (note order!) 3. A = u ‾ ⊗ b ⊗ v ‾ \textbf{\textsf{ A}} = \underline{\boldsymbol{ u}} \otimes \boldsymbol{ b} \otimes \underline{\boldsymbol{ v}} A = u ⊗ b ⊗ v
C) Simplify expressions Use index notation to try to simplify the following expressions. I : [ a a ] − a : a \boldsymbol{ I}:\left[\boldsymbol{ a}\boldsymbol{ a}\right]-\boldsymbol{ a}:\boldsymbol{ a} I : [ a a ] − a : a where a i j = a j i a_{ij}=a_{ji} a ij = a ji and I = δ i j e ‾ i ⊗ e ‾ j \boldsymbol{ I}=\delta_{ij}\underline{\boldsymbol{ e}}_i\otimes\underline{\boldsymbol{ e}}_j I = δ ij e i ⊗ e j
z : Y : x − [ z : Y ] : x \boldsymbol{ z}:\textbf{\textsf{ Y}}:\boldsymbol{ x} - \left[\boldsymbol{ z}:\textbf{\textsf{ Y}}\right]:\boldsymbol{ x} z : Y : x − [ z : Y ] : x
u ‾ x v ‾ − [ u ‾ ⊗ v ‾ ] : x \underline{\boldsymbol{ u}}\boldsymbol{ x}\underline{\boldsymbol{ v}} - [\underline{\boldsymbol{ u}}\otimes\underline{\boldsymbol{ v}}]:\boldsymbol{ x} u x v − [ u ⊗ v ] : x
Answers
1. Short: Insert directly to index expressions, δ i j a i k a k j − a k l a k l = a i k a k i − a k l a k l \delta_{ij} a_{ik}a_{kj} - a_{kl}a_{kl} = a_{ik}a_{ki} - a_{kl}a_{kl} δ ij a ik a kj − a k l a k l = a ik a ki − a k l a k l . Then use that a i k = a k i a_{ik}=a_{ki} a ik = a ki , which gives a k i a k i − a k l a k l = a : a − a : a = 0 a_{ki}a_{ki}-a_{kl}a_{kl}=\boldsymbol{ a}:\boldsymbol{ a} - \boldsymbol{ a}:\boldsymbol{ a} = 0 a ki a ki − a k l a k l = a : a − a : a = 0 Longer : To get the index expression, we insert everything using basis vectors: [ δ i j e ‾ i ⊗ e ‾ j ] : [ [ a k l e ‾ k ⊗ e ‾ l ] ⋅ [ a m n e ‾ m ⊗ e ‾ n ] ] − [ a o p e ‾ o ⊗ e ‾ p ] : [ a q r e ‾ q ⊗ e ‾ r ] [\delta_{ij} \underline{\boldsymbol{ e}}_i\otimes\underline{\boldsymbol{ e}}_j]:[[a_{kl} \underline{\boldsymbol{ e}}_k\otimes\underline{\boldsymbol{ e}}_l]\cdot[a_{mn} \underline{\boldsymbol{ e}}_m\otimes\underline{\boldsymbol{ e}}_{n}]] - [a_{op} \underline{\boldsymbol{ e}}_o\otimes\underline{\boldsymbol{ e}}_p] : [a_{qr} \underline{\boldsymbol{ e}}_q\otimes\underline{\boldsymbol{ e}}_r] [ δ ij e i ⊗ e j ] : [[ a k l e k ⊗ e l ] ⋅ [ a mn e m ⊗ e n ]] − [ a o p e o ⊗ e p ] : [ a q r e q ⊗ e r ] Take all index coefficients outside δ i j a k l a m n [ e ‾ i ⊗ e ‾ j ] : [ [ e ‾ k ⊗ e ‾ l ] ⋅ [ e ‾ m ⊗ e ‾ n ] ] − a o p a q r [ e ‾ o ⊗ e ‾ p ] : [ e ‾ q ⊗ e ‾ r ] \delta_{ij}a_{kl}a_{mn}[\underline{\boldsymbol{ e}}_i\otimes\underline{\boldsymbol{ e}}_j]:[[\underline{\boldsymbol{ e}}_k\otimes\underline{\boldsymbol{ e}}_l]\cdot[\underline{\boldsymbol{ e}}_m\otimes\underline{\boldsymbol{ e}}_{n}]] - a_{op}a_{qr}[\underline{\boldsymbol{ e}}_o\otimes\underline{\boldsymbol{ e}}_p]:[\underline{\boldsymbol{ e}}_q\otimes\underline{\boldsymbol{ e}}_r] δ ij a k l a mn [ e i ⊗ e j ] : [[ e k ⊗ e l ] ⋅ [ e m ⊗ e n ]] − a o p a q r [ e o ⊗ e p ] : [ e q ⊗ e r ] Evaluate the single contraction (dot-product) δ i j a k l a m n [ e ‾ i ⊗ e ‾ j ] : [ e ‾ k ⊗ e ‾ n δ l m ] − a o p a q r [ e ‾ o ⊗ e ‾ p ] : [ e ‾ q ⊗ e ‾ r ] \delta_{ij}a_{kl}a_{mn}[\underline{\boldsymbol{ e}}_i\otimes\underline{\boldsymbol{ e}}_j]:[\underline{\boldsymbol{ e}}_k\otimes\underline{\boldsymbol{ e}}_{n}\delta_{lm}] - a_{op}a_{qr}[\underline{\boldsymbol{ e}}_o\otimes\underline{\boldsymbol{ e}}_p]:[\underline{\boldsymbol{ e}}_q\otimes\underline{\boldsymbol{ e}}_r] δ ij a k l a mn [ e i ⊗ e j ] : [ e k ⊗ e n δ l m ] − a o p a q r [ e o ⊗ e p ] : [ e q ⊗ e r ] Insert definition of the double contractions δ i j a k l a m n [ e ‾ i ⋅ e ‾ k ] [ e ‾ j ⋅ e ‾ n δ l m ] − a o p a q r [ e ‾ o ⋅ e ‾ q ] [ e ‾ p ⋅ e ‾ r ] \delta_{ij}a_{kl}a_{mn}[\underline{\boldsymbol{ e}}_i\cdot \underline{\boldsymbol{ e}}_k][\underline{\boldsymbol{ e}}_j\cdot\underline{\boldsymbol{ e}}_{n}\delta_{lm}] - a_{op}a_{qr}[\underline{\boldsymbol{ e}}_o\cdot\underline{\boldsymbol{ e}}_q][\underline{\boldsymbol{ e}}_p\cdot\underline{\boldsymbol{ e}}_r] δ ij a k l a mn [ e i ⋅ e k ] [ e j ⋅ e n δ l m ] − a o p a q r [ e o ⋅ e q ] [ e p ⋅ e r ] Evaluate the new single contractions δ i j a k l a m n [ δ i k ] [ δ j n δ l m ] − a o p a q r [ δ o q ] [ δ p r ] \delta_{ij}a_{kl}a_{mn}[\delta_{ik}][\delta_{jn}\delta_{lm}] - a_{op}a_{qr}[\delta_{oq}][\delta_{pr}] δ ij a k l a mn [ δ ik ] [ δ jn δ l m ] − a o p a q r [ δ o q ] [ δ p r ] Simplify all "δ i j \delta_{ij} δ ij " by exchanging replacing one index: "x i j δ j k = x i k x_{ij}\delta_{jk}=x_{ik} x ij δ jk = x ik " a j l a l j − a q p a q p a_{jl}a_{lj} - a_{qp}a_{qp} a j l a l j − a qp a qp And now we have a similar expression to the short route, and can finish following that one. 2. z i j Y i j k l x k l − [ z i j Y i j k l ] x k l = 0 z_{ij}\textsf{ Y}_{ ijkl}x_{kl} - [z_{ij} \textsf{ Y}_{ ijkl}]x_{kl} = 0 z ij Y ijk l x k l − [ z ij Y ijk l ] x k l = 0 3. u i x i j v j − [ u i v j ] x i j = 0 u_i x_{ij} v_j - [u_i v_j] x_{ij} = 0 u i x ij v j − [ u i v j ] x ij = 0
D) Identity tensors and transposition Simplify the following expressions by using index notation a I \boldsymbol{ a}\boldsymbol{ I} a I
[ I ⊗ ‾ I ] : a [\boldsymbol{ I}\overline{\otimes}\boldsymbol{ I}]:\boldsymbol{ a} [ I ⊗ I ] : a
I : [ a a T ] \boldsymbol{ I}:[\boldsymbol{ a}\boldsymbol{ a}^{\mathrm{T}}] I : [ a a T ]
Answers
1. a i j δ j k = a i k a_{ij} \delta_{jk} = a_{ik} a ij δ jk = a ik , hence, a I = a \boldsymbol{ a}\boldsymbol{ I}=\boldsymbol{ a} a I = a . 2. X = b ⊗ ‾ c \textbf{\textsf{ X}}=\boldsymbol{ b}\overline{\otimes}\boldsymbol{ c} X = b ⊗ c implies X i j k l = b i k c j l \textsf{ X}_{ ijkl}=b_{ik}c_{jl} X ijk l = b ik c j l , hence [ δ i k δ j l ] a k l = a i j [\delta_{ik} \delta_{jl}] a_{kl} = a_{ij} [ δ ik δ j l ] a k l = a ij and [ I ⊗ ‾ I ] : a = a [\boldsymbol{ I}\overline{\otimes}\boldsymbol{ I}]:\boldsymbol{ a}=\boldsymbol{ a} [ I ⊗ I ] : a = a . 3. δ i j [ a i k a k j T ] = δ i j [ a i k a j k ] = a i k a i k = a : a \delta_{ij}[a_{ik} a_{kj}^{\mathrm{T}}] = \delta_{ij}[a_{ik} a_{jk}] = a_{ik} a_{ik} = \boldsymbol{ a}:\boldsymbol{ a} δ ij [ a ik a kj T ] = δ ij [ a ik a jk ] = a ik a ik = a : a
E) Invariants Test if the following expressions are invariant to rotations v ‾ ⋅ u ‾ \underline{\boldsymbol{ v}}\cdot\underline{\boldsymbol{ u}} v ⋅ u
a : a \boldsymbol{ a}:\boldsymbol{ a} a : a
v ‾ a v ‾ \underline{\boldsymbol{ v}}\boldsymbol{ a}\underline{\boldsymbol{ v}} v a v
Answers
In all cases, we should show that rotating all tensors in the expressions by a proper orthogonal rotation tensor R \boldsymbol{ R} R does not change the result initial expression. We will heavily use that R T = R − 1 \boldsymbol{ R}^{\mathrm{T}}=\boldsymbol{ R}^{-1} R T = R − 1 , such that R T R = I \boldsymbol{ R}^{\mathrm{T}}\boldsymbol{ R}=\boldsymbol{ I} R T R = I 1. v ‾ ⋅ u ‾ \underline{\boldsymbol{ v}}\cdot\underline{\boldsymbol{ u}} v ⋅ u [ R v ‾ ] ⋅ [ R u ‾ ] = R i j v j R i k u k = R k i T R i j v j u k = R k i − 1 R i j v j u k = δ k j v j u k = v k u k = v ‾ ⋅ u ‾ [\boldsymbol{ R}\underline{\boldsymbol{ v}}]\cdot[\boldsymbol{ R}\underline{\boldsymbol{ u}}]=R_{ij}v_j R_{ik}u_k = R^{\mathrm{T}}_{ki}R_{ij} v_j u_k = R^{-1}_{ki}R_{ij} v_j u_k = \delta_{kj} v_j u_k = v_k u_k = \underline{\boldsymbol{ v}}\cdot\underline{\boldsymbol{ u}} [ R v ] ⋅ [ R u ] = R ij v j R ik u k = R ki T R ij v j u k = R ki − 1 R ij v j u k = δ kj v j u k = v k u k = v ⋅ u 2. a : a \boldsymbol{ a}:\boldsymbol{ a} a : a [ R a R T ] : [ R a R T ] = [ R i j a j k R k l T ] [ R i m a m n R n l T ] = R m i T R i j R k l T R l n a j k a m n = δ m j δ k n a j k a m n = a m n a m n = a : a [\boldsymbol{ R}\boldsymbol{ a}\boldsymbol{ R}^{\mathrm{T}}]:[\boldsymbol{ R}\boldsymbol{ a}\boldsymbol{ R}^{\mathrm{T}}] = [R_{ij} a_{jk} R^{\mathrm{T}}_{kl}] [R_{im} a_{mn} R^{\mathrm{T}}_{nl}] = R^{\mathrm{T}}_{mi}R_{ij} R^{\mathrm{T}}_{kl} R_{ln} a_{jk} a_{mn} = \delta_{mj} \delta_{kn} a_{jk} a_{mn} = a_{mn} a_{mn} = \boldsymbol{ a}:\boldsymbol{ a} [ R a R T ] : [ R a R T ] = [ R ij a jk R k l T ] [ R im a mn R n l T ] = R mi T R ij R k l T R l n a jk a mn = δ mj δ kn a jk a mn = a mn a mn = a : a 3. v ‾ a v ‾ \underline{\boldsymbol{ v}}\boldsymbol{ a}\underline{\boldsymbol{ v}} v a v [ R v ‾ ] [ R a R T ] [ R v ‾ ] = [ R i j v j ] [ R i k a k l R l m T ] [ R m n v n ] = R k i T R i j R l m T R m n v j a k l v n = δ k j δ l n v j a k l v n = v k a k l v l = v ‾ a v ‾ [\boldsymbol{ R}\underline{\boldsymbol{ v}}][\boldsymbol{ R}\boldsymbol{ a}\boldsymbol{ R}^{\mathrm{T}}][\boldsymbol{ R}\underline{\boldsymbol{ v}}] = [R_{ij} v_j] [R_{ik} a_{kl} R^{\mathrm{T}}_{lm}][R_{mn} v_n] = R^{\mathrm{T}}_{ki} R_{ij} R^{\mathrm{T}}_{lm}R_{mn} v_j a_{kl} v_n = \delta_{kj} \delta_{ln} v_j a_{kl} v_n = v_k a_{kl} v_l = \underline{\boldsymbol{ v}}\boldsymbol{ a}\underline{\boldsymbol{ v}} [ R v ] [ R a R T ] [ R v ] = [ R ij v j ] [ R ik a k l R l m T ] [ R mn v n ] = R ki T R ij R l m T R mn v j a k l v n = δ kj δ l n v j a k l v n = v k a k l v l = v a v