Answers
1. vav becomes a scalar value, x=vav=viaijvj
2. xbu becomes a vector, v=xbu, vi=xijbjkuk
3. [a⊗a]:[v⊗v] is a 4th order tensor double contracted with a 2nd order tensor, which gives a 2nd order tensor, x. This becomes xij=aijaklvkvl
Answers
1. x=a:b
2. v=av (note order!)
3. A=u⊗b⊗v
Answers
1. Short: Insert directly to index expressions, δijaikakj−aklakl=aikaki−aklakl. Then use that aik=aki, which gives akiaki−aklakl=a:a−a:a=0
Longer: To get the index expression, we insert everything using basis vectors:
[δijei⊗ej]:[[aklek⊗el]⋅[amnem⊗en]]−[aopeo⊗ep]:[aqreq⊗er]
Take all index coefficients outside
δijaklamn[ei⊗ej]:[[ek⊗el]⋅[em⊗en]]−aopaqr[eo⊗ep]:[eq⊗er]
Evaluate the single contraction (dot-product)
δijaklamn[ei⊗ej]:[ek⊗enδlm]−aopaqr[eo⊗ep]:[eq⊗er]
Insert definition of the double contractions
δijaklamn[ei⋅ek][ej⋅enδlm]−aopaqr[eo⋅eq][ep⋅er]
Evaluate the new single contractions
δijaklamn[δik][δjnδlm]−aopaqr[δoq][δpr]
Simplify all "δij" by exchanging replacing one index: "xijδjk=xik"
ajlalj−aqpaqp
And now we have a similar expression to the short route, and can finish following that one.
2. zij Yijklxkl−[zij Yijkl]xkl=0
3. uixijvj−[uivj]xij=0
Answers
1. aijδjk=aik, hence, aI=a. 2. X=b⊗c implies Xijkl=bikcjl, hence [δikδjl]akl=aij and [I⊗I]:a=a.
3. δij[aikakjT]=δij[aikajk]=aikaik=a:a
Answers
In all cases, we should show that rotating all tensors in the expressions by a proper orthogonal rotation tensor R does not change the result initial expression. We will heavily use that RT=R−1, such that RTR=I
1. v⋅u
[Rv]⋅[Ru]=RijvjRikuk=RkiTRijvjuk=Rki−1Rijvjuk=δkjvjuk=vkuk=v⋅u
2. a:a
[RaRT]:[RaRT]=[RijajkRklT][RimamnRnlT]=RmiTRijRklTRlnajkamn=δmjδknajkamn=amnamn=a:a
3. vav
[Rv][RaRT][Rv]=[Rijvj][RikaklRlmT][Rmnvn]=RkiTRijRlmTRmnvjaklvn=δkjδlnvjaklvn=vkaklvl=vav