Vector algebra

Answers

1. a=aiei\underline{\boldsymbol{ a}}=a_i \underline{\boldsymbol{ e}}_i and b=biei\underline{\boldsymbol{ b}}=b_i\underline{\boldsymbol{ e}}_i. Their scalar product is ab=aibjeiej\underline{\boldsymbol{ a}}\cdot\underline{\boldsymbol{ b}}=a_i b_j \underline{\boldsymbol{ e}}_i \cdot \underline{\boldsymbol{ e}}_j, where eiej=δij\underline{\boldsymbol{ e}}_i \cdot \underline{\boldsymbol{ e}}_j=\delta_{ij} following the orthonormal coordinate system. Hence, ab=aibi\underline{\boldsymbol{ a}}\cdot\underline{\boldsymbol{ b}}=a_i b_i (Normally, we use this without any derivation.)
2. We require that eiej=δij\underline{\boldsymbol{ e}}_i\cdot\underline{\boldsymbol{ e}}_j=\delta_{ij}, that is that ei=1|\underline{\boldsymbol{ e}}_i|=1 and ei\underline{\boldsymbol{ e}}_i is perpendicular to ej\underline{\boldsymbol{ e}}_j if jij\neq i. Furthermore, we require that it is right-handed, i.e. e3=e1×e2\underline{\boldsymbol{ e}}_3=\underline{\boldsymbol{ e}}_1\times\underline{\boldsymbol{ e}}_2.