2. We require that e‾i⋅e‾j=δij\underline{\boldsymbol{ e}}_i\cdot\underline{\boldsymbol{ e}}_j=\delta_{ij}ei⋅ej=δij, that is that ∣e‾i∣=1|\underline{\boldsymbol{ e}}_i|=1∣ei∣=1 and e‾i\underline{\boldsymbol{ e}}_iei is perpendicular to e‾j\underline{\boldsymbol{ e}}_jej if j≠ij\neq ij=i. Furthermore, we require that it is right-handed, i.e. e‾3=e‾1×e‾2\underline{\boldsymbol{ e}}_3=\underline{\boldsymbol{ e}}_1\times\underline{\boldsymbol{ e}}_2e3=e1×e2.